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Abstract—The complete nonlinear differential equations governing the nonlinear motions of a
beam able to undergo bending and pitching in space, are formulated in this paper. The formulation
is based on a variational principle and accounts for all the nonlinearities due to deformation and
gravity gradient effects. The nonlinearities due to deformation arise due to geometric effects, which
consist of nonlinear curvature and nonlinear inertia terms. Expanded equations governing the
nonlinear perturbed motion about an equilibrium are also developed for the case when the beam is
in circular orbit. Such equations are suited for a perturbation analysis of the motion, and non-
linearities up to cubic order in a bookkeeping parameter are retained in them. Nonlinear motions
involving interactions between bending and pitching of the beam are investigated in Part II of this
work using the equations developed here.

INTRODUCTION

Some engineering structures are constructed to operate in the space environment where
their behavior is affected by gravity gradient moments, and by external forces such as due
to aerodynamics (for low earth orbits) and solar radiation pressure, control forces, etc.
Consideration of flexibility of such structures is of utmost importance to the understanding
of their dynamic behavior [see, for example, Etkin and Hughes (1967), Krishna and Bainum
(1984), Modi (1974) and Modi and Ng (1989)]. Many components of such structures are
long members that can be modeled as beams. For an orbiting beam, gravity gradient effects
cause it to oscillate relative to an orbital reference frame with pitch frequencies that are of
the order of the orbital angular speed.

Under some conditions, linear mathematical models do not predict the actual motion
of a space structure since such models do not disclose the various types of dynamic phenom-
ena that are caused by the nonlinearities in the equations of motion. For a beam, for
example, even if its material is linear, the differential equations of motion for the system
contain a number of nonlinearities due to deformation. Such nonlinearities are due to the
deformation of the structure and to the gravity gradient effect (which depends on the
deformation and on the orientation of the beam in space). They include inertia terms, and
terms that arise from the expression for the curvature of the beam, which involve nonlinear
terms in the elastic deformations. It turns out that nonlinearities that are present in the
expression for the curvature are of the same order of inertia nonlinearities, and of non-
linearities due to the gravity gradient effect. Thus, care should be taken so that all such
nonlinearities are retained in the formulation in a consistent manner.

A number of studies undertaken in the past were restricted to linearized models to
describe the flexibility of both free—free beam-like structures and flexible appendages
attached to rigid satellites. Few analytical studies have dealt with the nonlinear dynamics
of flexible structures in orbit modeled as beams. Of these, the pioneering works of Ashley
(1967), Kumar and Bainum (1980), Bainum and Kumar (1982), and Budynas and Poli
(1971), are closely related to the present work. Those works considered the dynamics of a
slender beam in orbit undergoing small pitch and flexure motions.

In the work presented in the references mentioned above, the dynamics of a free—free
beam in orbit was addressed. Kumar and Bainum (1980) and Bainum and Kumar (1982)
addressed the planar motion of a long slender beam in a circular orbit undergoing pitch and
flexural motions, and the motion and stability of space beams about a nominal local
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horizontal orientation. As in Ashley (1967), small motions were assumed and it was
concluded that the pitch motion is essentially decoupled from the elastic motion and that
the elastic motion is essentially governed by Hill’s equation with the pitching motion acting
as a parametric excitation to the elastic bending motion. Nonlinearities such as those due
to nonlinear terms in the expression for the beam’s curvature were not considered. These
and other nonlinearities that are accounted for in this paper were not considered in the
work of Budynas and Poli (1971) either, where the planar motion of a large flexible satellite
consisting of a compact rigid body containing two flexible antennae located 180" from one
another was studied. In the present work, which is divided into two parts, it is shown that
other nonlinearities due to the deformation of the structure can play a dominant role in the
motion of the structure under certain conditions of practical interest.

The formulation of the nonlinear differential equations of motion for a beam under-
going pitching and bending motions in the plane of the motion of the center of mass of the
structure in space is addressed in this paper. The formulation presented here is based on
that developed by Crespo da Silva and Glynn (1978a,b) and by Crespo da Silva (1991).
and accounts for all nonlinear terms that arise from geometric effects. It also accounts for
all the nonlinearities arising from gravity gradient effects acting along the beam, and from
coupling between the elastic and the pitch motions of the beam. The formulation is based
on a variational approach, which also yields a general boundary condition equation that
involves the deformation variables for the motion. In order to be able to investigate the
motion by analytical techniques, the full nonlinear differential equations of motion
developed here are also expanded about an equilibrium solution into polynomial non-
linearities up to cubic order in an arbitrary “bookkeeping parameter”. The expanded
equations are especially suited for a perturbation analysis of the motion of the beam.

MATHEMATICAL MODEL AND BASIC ASSUMPTIONS

In this paper, the nonlinear differential equations that govern the motion of a beam in
the plane of the motion of its center of mass are formulated. The equations developed here
are applicable to the case where the beam is subjected to the force of a central attracting
point, E, that represents the center of mass of a spherical planet of radius R, and very large
mass m;. The small, long term effect of the motion of E around another central attracting
body is neglected, and E is treated as if it were an inertial point. The beam may be subjected
to small distributed and/or concentrated forces. These forces are assumed to be small
enough so that their effect on the motion of its center of mass due to the inverse-square law
gravitational attraction of E is neglected.

Consider a free—free thin beam of length L « Rg, specific mass m kg m ', made of
Hookean material, and subjected to the gravitational attraction of E. As shown in Fig. 1,
the center of mass of the beam, C, moves in a trajectory in space due to the central attraction
of E. The location of C relative to E is described by the distance R.(¢r) and by the angle
¢ (1), where ¢ denotes time. The line EC rotates in space with an angular velocity equal to
é rads s~ '. The beam is assumed to be straight when it is undeformed. Figure 1 shows the
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Fig. 1. Free-free beam subjected to the gravitational force of a central attracting body.
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reference line of the beam in both its undeformed (4B) and deformed (4* B*) configur-
ations. The reference line AB is chosen to be a principal axis of the deformed beam. Due
to the gravity gradient effect, that axis tends to point toward the center of attraction E (e.g.
Hughes, 1986). The axes (x,, y,) shown in that figure are inertial, while the axes (n, {) are
taken to be the principal axes of the beam’s cross-section, normal to the £ axis, at position
s. Here s denotes the arc-length along the deformed beam. Carets (*) in that figure are used
to indicate unit vectors along the different axes. When the beam is in its undeformed state,
the unit vectors £ and # are aligned with % and J, respectively ; £ is oriented along line 4B,
which is pitched by an angle 8 with respect to the orbital reference unit vector £, in the
direction from E to C. .

During deformation, an arbitrary point M on the beam’s reference line moves to
position M*, thus undergoing an elastic displacement u(s, £)£+v(s, #) §. The position s = 0
corresponds to point A* in Fig. 1, while s = L corresponds to point B*. With x, £ |AC|,
and since point C is the center of mass of the beam, it follows that

L L
j AM*mds Ej [(s+w)x+vplmds & (xc)ﬁ)j mds. 6))
beam s=0 0

Since C is also the center of mass for the undeformed beam, the above equation is also
satisfied for u = v = 0. Therefore, eqn (1) yields the following relations for the elastic
displacements u(s, #) and v(s, ¢),

jL u(s, Hm(s)ds = 0; JL v(s, )m(s)ds = 0. (2a,b)

Since the reference line 4B (which is rotating relative to the orbital reference line) is a
principal axis of the deformed beam, the product of inertia I,, = j'g (s—x,+u)vm ds s zero.
Making use of eqn (2b), the condition I,, = 0 then reduces to

J (s+wyvmds = 0. 3)

0

Equations (2a, b) and (3) will be needed later in this paper.

The beam is modeled as an Euler-Bernoulli beam with very large axial stiffness E4 so
that it is approximated as an inextensional beam (Crespo da Silva, 1988 ; 1991). Therefore,
the quantities u(s, t) and o(s, 7) are related by the following constraint equation due to
inextensionality

(+u)2+v2 =1 C))

where primes denote partial differentiation with respect to s.

In the next section, the differential equations of motion are generated via Hamilton’s
principle. For this, the expressions for the kinetic energy, and for the virtual work done by
the forces applied to the beam, are needed. Letting dots denote partial differentiation with
respect to time ¢, the absolute velocity of an arbitrary point M* on the beam’s reference
line is (see Fig. 1)

Oy = [RE 1+ (s—x,+w)E+0f]" = [i1— ($+6)v+ R, cos 0+ R, sin 0]%
+[6+ (¢ +0)(s—x,+u)— R.sin 0+ $R, cos 8] 5. (5)
If the ({,7,{) axes in Fig. 1 are chosen to be the principal axes of inertia of the cross-

section at location s, and centered at the cross-section’s center of mass, the specific kinetic
energy, T, becomes (Crespo da Silva, 1991)
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T = dmBpe Bype 43700+ 04+ ¢)? = 17,(6,+ 6+ §)>
+rg{[u—(d;-%é)v]z-{-[L"+(45+0.)(s—x(.+u)]2+R3+d;2Rf

+2[ti— (¢ +6)0][R, cos 6+ ¢ R, sin 6]
2[5+ (+0)(s— x.+w)][$R. cos 0— R, sin 0]} (6)

where 8, = arctan [v'/(1 +u)], and J. is the specific mass moment of inertia of the beam’s
cross-section about its { axis.

If the beam material is Hookean and isotropic, and if the small effect of shear is
neglected, the specific virtual work due to deformation is equal to —D0.567, where D, is
the beam’s bending stiffness about the { axis. For long and slender beams, the j, terms,
which are of the order of magnitude of the shear effects that have been neglected, have a
negligible effect on the motion of the beam. Therefore, their effect will also be neglected
from now on.

The specific virtual work due to the gravitational attraction from the central attracting
point E, which we will denote as (6 W),, is simply

G
(W) = = 2 Orye & 0, 3u+Q, 00+ 05,30+ Q IR, %

M*

where G is the universal gravitational constant, and ry. = ]f]\?‘z | 1s the distance from E
to M*. By making use of the following expression for dr,,. {see Fig. 1 and eqn (5)],

s = (Ors)/rys)

= {S[R}+ (s—x.+u)>+0? +2R %, - CM*]}/(2ry+) (8

and by noticing that CM* = (s—x.+u)(x, cos 0+, sin 8) +v(J, cos 86— %, sin §), the
specific generalized gravitational forces Q,, Q,, Qy, and O are then obtained as

GmE

Q. = R (s—x.+u+ R, cos ) (rys/R.)"’ (9a)
0, = G’,’;E L(R, sin 0—0)(rye/R) (9b)
Gm,;
Qv, = R3 - R.[(s+u—x)sin 8+vcos 8](ry+/R,)* (9¢c)
Gmb 3
O, = —— 538 ~[R.4 (s+u—x.) cos 8—v sin B](ry./R,) 9d)
where
- 32
(ruue/ R = {1+ (=Xt | 2 o+ cos O—vsin 0]}

(s—x,+u)cos §—vsin 0

~ o —_——— 10
~1-3 R (10)

Expressing all other distributed forces that may be acting on the beam as

F = Fj+F.£ = (F,cos 0. —F, sin 6,)%+ (F; sin 0.+ F, cos 0.)
= [(1+u)F;:—v FJ%+[v F:+ (1+u)F,] (an
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and modeling the virtual work due to structural damping as —codv, the specific virtual
work done by the nongravitational forces, which we will denote as §W,, is then obtained
as given below. The generalized forces Q% and Q} were added in eqn (12) in order to make
the center of mass C travel on any trajectory that one may specify. Since damping due to
the space environment (i.e. associated with 66, d¢ and dR.) is expected to be very small, it
is neglected here for simplicity.

W, = —cov+F+ (R %+ CM*) + Q% 5R.+Q35¢

[Q+u)F;—v'F,) du+[v' Fe+ (1 +u')F, — v dv
+{(s+u—x)[(1+w)F,+v F]+v[v'F,—(1+u)F;]} 60
+{G+u—x)[(1+u)F,+v F]+ o[’ F,— (1+u)F]

+ R, [F, sin (6+6,)+ F, cos (6+6,)]+Q3%} 6¢

+[F: cos (0+0,)—F,sin (0+0,)+Q%16R,

£ Q,.0u+(Q,,—cv) 6v+ Q00+ Q400+ Qg OR.. (12)

With W, given by eqn (12), the total specific virtual work done by the distributed
forces acting on the beam, I, is then obtained as

oW =W, + oW, = —D;0;50;+(ng+Q,,n) ou+ (Q,,K+Q,,o—cﬁ) ov
+(Qo,+ Qo)) 30+ Qg0 +(Qn_+Qr) SR.. (13)

The expressions for 7 and W are used in the next section to generate the differential
equations of motion for the beam.

DIFFERENTIAL EQUATIONS OF MOTION

The differential equations of motion, and a boundary condition equation, can be
readily obtained from Hamilton’s extended principle, which is given as

141

ty L
ol = j {o(T)+oW+ii[1—(1+u')’ —v'?]} ds dt+f

=t; J5=0

SWadt=0 (14)

=t

where A is a Lagrange multiplier that is used to handle the constraint, eqn (4), and W, is
the virtual work associated with any force that may be applied at the boundaries, such as
follower forces, which require an integration by parts in eqn (14) (Crespo da Silva and
Glynn, 1978a). For simplicity, it will be assumed here that the beam is not subjected to
such forces.

By taking the variation of the kinetic energy T, and by integrating by parts some of
the terms in eqn (14), the following equations of motion and boundary condition equation
are readily obtained after making use of eqns (2a,b) and (3), and after neglecting the j,
terms,

<L m ds)(R'c—qéch) = — (;”;EJ; m ds+J; Ok ds (15

L L
(f mds)(R3¢3>'= f Q,ds (16)
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J; {(s X +u)? (9+¢+3(} sm0c030>+(s x+u)[v-i~3GR3 vcos(29)]

+2(P+0)(s— X, + u)i— i+ [(p+6)v* -3 C;3 v sm000s0} ds

<

=fQ90ds a7

(D) v +A(1+u)] & G, m{ﬁ—2((ﬁ+é)z}—(d5+9')v

~(@+0)*(s—x. +u)+ (R.— $*R.) cos 6— R}—(qub' sin 0}—Qu0

Gmy
+ m(s—x.+u+R.cos0)] 1 -3

(s—x,+u)cos —vsin 9]
R}

R,

~ m{ﬁ—Z(tﬁ—!—é)ﬁ—((,5+9')U~(2¢.+0.)(s—x(. +u)f
Gmy G
+<F_¢ )(s X, 4u)— R3 [(s x.+u)cos §—vsin 6] cos 8
. (Gm, . L
+ [R(.+ (R—"z —¢2)R,} cos 0— }% (R2¢)’ sin 9}—Qu0 (18)
[— (D0 (1 +u)+ ] & G, = m{if+2(¢;+é)a

+(G+)(s—x. 4w~ (+6)0— (R~ $*R.)sin 0+ ,% (R2) cos 9}

Gm mg [ (s —x(,+u)cos0—vsin0]
1— — +c

~ & ~ m(R, sin 8 —0) R =0,

¢

~ m{ﬁ+2(¢3+é)u+($+é)(s_x, +u)— (2d+6)6v

+<C;”;E_q§2> [R +<%§5—¢') ]sin@ﬂ—%(Rf(ﬁ)'COSg

&

G
+37f’§£[(s—xc+u)cos 6—v sin 0] sin0}+cz§—Q,,0. (19)

In the above equations, very smali terms that were inversely proportional to the distance
R, from E (the center of mass of the attracting body) to C, such as v sin §/R,, were neglected.

Considering the case where 6 Wy = 0, the following boundary condition equation is
obtained from the terms that were integrated by parts in eqn (14)

{G,0u+G, 00+ D0.56.} . = 20)

For a free—free beam, the following boundary conditions are extracted from the above
equation
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G(s=0,)=G.(s=L,H)=0 (21a)
0,0,0) =0,(L, =0 .. v'©0,0)=0v"(L,)=0 (21b)
(D)) w0z =0 . 07(0,8) = v"(L,2) = 0. Q1c)

The elastic displacement u(s, f) may be eliminated from the differential equations of
motion. To do this, eqn (4) is first solved for #'(s, ) and the result integrated from s = L
to s = s to yield

u(s,t) = u(L, t)+J\s [/1—v?—1]ds. 22)
L

An expression for u(L, r) can be obtained by making use of the following identity

JLum ds = l:u J‘smds:r —j.Lu’[J‘smds}ds (23)
0 0 s=0 0 0

and of the result given by eqn (2a). By solving eqn (23) for u(L, ¢), the following expression
for u(s, ¢) for a free—free beam is then obtained

u(s, ) = m J;L [/1-v*-1] [J:m ds:| ds+J;s [/1-v%—1]ds. (249)

Equations (15)-(19) are the full-nonlinear differential equations that govern the motion
of a free—free beam subjected to the gravity gradient forces due to the central attracting
body and to external distributed forces.

Equation (19) may be reduced to an integro-partial differential equation that does not
involve the elastic displacement u(s, #) and the Lagrange multiplier A(s, £). To do this, both
sides of eqn (18) are integrated from s = L to s = s, and the resulting equation is solved
for the Lagrange multiplier 4. The solution for A is then substituted into eqn (19) to obtain
an alternate expression for G,. With u(s, #) given by eqn (24), the new expression for G, to
be used in eqn (19), obtained as indicated above, is

G, = ﬁ {—(050;)41/ JL m[ﬁ—2(¢3+0’)ﬁ—(<i>'+0‘)v—(2¢3+é)(s—xc+u)é

G . G
+<“I% —¢2)(S—xc+u)-—3 %[(s—x,&u)cos 6—uvsin 8] cos 0

+[1’éc+(G

e ——(ﬁz)R :Icos 0— l(R2q13)' sin 0] ds—v fs Q ds} 25
RC3 (4 Rc (4 ug .

L

EXPANDED EQUATIONS FOR A BEAM IN CIRCULAR ORBIT

To generate as much information as possible about the dynamic behavior of the beam,
an analytical investigation of the motion is governed by eqns (15)—(17), and (19) with G,
given by eqn (25), is desirable. To do this, however, it becomes necessary that we restrict
the type of motions to be investigated so that those equations become suitable for such
analysis. The first step in doing this consists of determining the equilibrium solutions to
those equations. For “small” perturbed motions about the equilibrium solutions, one can
expand the nonlinear differential equations of motion in Taylor series about their equi-
librium solution and retain the resulting polynomial nonlinearities to a desired degree in
the perturbations. The resulting equations that are generated in this manner are then
suitable for a perturbation analysis of the nonlinear motion. Such analysis reveals a wealth
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of information about the behavior of the system. Such equations are developed here for
the case when both v(s, 1) and 6(¢) are small, and when the beam is in a circular orbit so
that R, = constantand ¢ = Gm,/R} £ Q,, which is also a constant. A study of the influence
of satellite flexibility on the orbital motion has been presented by Misra and Modi (1978).
Inspection of eqns (17) and (19) immediately discloses that v = 0, and 6 = 0 or § = =, are
equilibrium solutions to those equations when Q, = 0 and Q, = 0. Here, eqns (17) and
(19) are expanded about the equilibrium state v = 8 = 0, which is the stable equilibrium of
the system.

To generate the perturbed equations for small v and 8, let ¢ be a small bookkeeping
parameter that is introduced only to keep track of orders of magnitude. With ¢ = O(¢) and
6 = O(¢), the following expansions are obtained for u(s, r), which is given by eqn (24), and
for 0,(s, t):

1 L R s l s R A
= e e — 4 262
u{s, t) Zﬁm 4 L v [_L m ds] ds 5 J{ vt ds+0(e”) (26a)

72
N

0. = arcsin v’ = v’(l + L6>+0(84). (26b)

With G, given by eqn (25), the O(¢") expanded form of eqn (19) is then obtained as

m{i+ (s +u—x.) + 2(Qc + 6)i — 2Q, + 6) v +3Q2[(s — x.) (0 — 30°) + uf — 6]}

§

+(D")" + v+ {v,(l 37 f Q. ds+v' (D' v") +3Q%0" J m(s—x,) ds}
I8 L
- {v’ J mlti—2(Q, + 66 — v — (04 2Q.) (s — x,)6
L
—3Q%(s+u—x,—0*(s—x.) —v0)] ds} =Q,, (27)

where u(s, 1) is given by eqn (26a). By proceeding in a similar manner, the O(e*) expanded
form of eqn (17) is obtained as given below :

L
j m{(s—x.)2(0+3Q20 —2020%) +2(s — x Ju(§+ 3Q70)
0
+ (s— x)(E+ 3Q2 — 6Q200%) + u(i + 3Q7v)
. . L
+2(Q, + ) (s — x )i —iiv+ [(Q.+0)0?] = 3Qv*0} ds =J Qo ds.  (28)
0

Equations (27) and (28), with u given by eqn (26a), are the O(¢?) nonlinear equations
that govern the coupled bending-pitching motion of a flexible beam in a circular orbit
about a central attracting body such as the Earth. An approximate solution to these
equations may be obtained by perturbation techniques such as those presented by Nayfeh
and Mook (1989). To this end, a modal reduction technique may be applied to these
equations to convert them into a set of nonlinear ordinary differential equations, which are
then analysed in succession for the different levels of approximation.
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NORMALIZATION AND MODAL REDUCTION OF THE EQUATIONS

To analyse the motion of the beam it is convenient to write the differential equations
of motion in nondimensional form by introducing the following normalized quantities,
indicated by a * superscript.

=s/L; v*=v/L; w*=ulL; x¥=x/L (29a)

u(s*) = m(s*) / L m(s*)ds*;  f(s*) = Di(s%) / L Dy(s*) ds* (29b)

t* = t\/£4 [fl D (s*) ds*]/J;l m(s*) ds* (29¢)
= QCL2\/|:J‘1 m(s*) ds*]/[j] D,(s*) ds*] (29d)
0 0

= 1°Q,, / Il Di(s%) ds* (x = u,v); Qf=L2Q, / f D;(s*) ds* (29€)
0 0

c* = cL2/\/|: Jl m(s*) ds*] I:Jl Di(s*) ds*]. (29f)

The normalized equations are of the same form as eqns (27) and (28). To write them,
one simply needs to replace the distributed mass m by u and the stiffness D; by §; in
those equations. For convenience in notation, the * superscript will be dropped from any
normalized quantity referred to from this point forward.

To apply a modal reduction to the normalized equations, let us first look at the solution
to their O(¢) (i.e. linearized) counterpart in the absence of excitation and damping. In this
case, the solution for the O(g) part of v(s, ) is of the form

066.0) = 3. F6)o, (0.

Since eqn (2b) and the O(e) part of eqn (3) disclose that

L H($)F(s)ds =0 (30)

and that
L su(s)Fi(s)ds =0 ' : (31

it can be readily verified that, with v, (f) = 4 cos (w;#+ B), and with Q., being at least O(g),
the eigenfunction F;(s) satisfies the followmg differential equation, whlch is obtained from
eqns (27) and (28) with the boundary conditions for a free—free beam

(B.F{)" — nolF;+ 30} [F i ﬁ (s—x)u dS] =0. (32)

Equation (32), with the boundary conditions F;(0) = F;"(0) = F/(1) = F/(1) = 0
constitutes a two-point boundary value problem that can be solved numerically to determine
the eigenfunction F;(s) and the frequency w; (i = 1,2,...) for the general case when u and
B, are functions of s. It can be easily verified that the elgenfunctlons are orthogonal in the
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sense that f(l) F.(s)F;(s) ds = Ofor j # i. For convenience, we will normalize the eigenfunction
Fi(s) so that [, uFids = 1.

An approximate solution to the nonlinear eqns (27) and (28) may be obtained by
letting

v(s, 1) = i Fi(s)l?,’(l)
=1

in those equations, muitiplying the resulting dv-equation (eqn 27) by F;(s), and then
integrating the result from s = 0 to s = 1. This yields a set of nonlinear ordinary differential
equations for the temporal parts of the response, v,(¢). To do this, only a one mode
approximation for »(s, ) will be considered here for simplicity. Thus, dropping the i
subscript, the O(e?) approximation for u(s, f) given by eqn (26a) becomes

1 1 1 s 3 i , . )
u(s, 1) = — 3 [ﬁudvﬁ F"(L u ds) ds‘j F? ds]v,'(t) 2 Ky(s)vr. (33)

Similarly, since the external force components F, and F; are at least O(g), the O(¢’)
approximation for the generalized forces Q,4, Q. and Qyg, given by eqn (12), become

124
Ouo = [1 - 5;9 vf(r)]Fg (5.1) = F'($)F, (s, (1) (34a)
0.0 = F/(8)Fo(s. 0,(1) + [1 - F»';fl z:,z(t):|F,,(s. 1) (34b)

0 = =2 {FORe o+ 1- a0 |60
FKAOF, (.00 0~ [F(s, )~ FOR 5, 0000, (340)

By introducing the following constant quantities which will appear as coefficients in
the reduced differential equations,

1 s ’ 1 K
B =J FI:F’J (s—x)p dsj| ds = —j F’zj‘ (s—x)udsds (35a)
0 1 0 {
1 K ’ i §
p,= —J Fl:Ff sz(s)ds} ds :J F’ZJ uK,(s)ds ds (35b)
0 1 0 1
t 5 ’
B =f F{F’(ﬁ;F’F”)'+%wf‘|:F’3J (s—x)u ds:I }ds——3wfﬁ3 (35¢)
0 1

and by noticing that
i
J w()K,(s)F(s)ds =0 (36)
0
as required by the O(g?) part of eqn (3), and that [see eqn (A1) in the Appendix]

J 1 F[F’ f uF ds], ds=0 37)
0 1

the following reduced ordinary nonlinear differential equation is obtained from eqn (27):
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5, + ¢, + 00, + (B — 1) Qo +6)8v, — 302 (B, +1)0%0,+ B,0,(07) " + B0}

1 1 5 1 N
- f FF,ds—v, J F. [ f Féds:|ds+v,2 J F[F”J F’F,,ds+%F’2F,,] ds. (38)
0 0 1 0 I

It should be noted that eqn (32) was used to eliminate a term in j'(l, F(B.F")" ds that appears
in the intermediate equation that leads to eqn (38).

In addition, by introducing the following relationship that is derived in the Appendix
[see eqn (A2) in the Appendix]

Jl (s—xJuKrds = — /2 (39)
0

eqn (28) also yields the following reduced ordinary differential equation

[ JI (s—x.)u ds](9'+ 3020 —2w20%) — B, [0 (6 + 30?20) + (0. + 6)(v?)]

1

1
+[(w.+8)02] — 3020260 = j (s—xJ)F, ds+o, f ((s— x.)F’ — F1F ds
0 0

1
+o? f [K,+FF —3(s—x)F*JF,ds. (40)
0

Equations (38) and (40) are the reduced differential equations for v,(¢) and 6(7) with
polynomial nonlinearities up to cubic order in the perturbed variables. These differential
equations include all the nonlinearities due to deformation of the beam and due to the
gravity gradient effect. The nonlinearities due to deformation consist of inertia and curvature
terms.

Before closing, it is instructive to look at typical values for the constant coefficients in
the reduced equations and at the frequencies of oscillation, w;, for different values of the
orbital parameter w,. Table 1 shows the numerical values of w;, B, f, and B; for several
values of the normalized orbital angular speed w. for a beam with m(s) = constant (i.e.
u = 1). The values shown in Table 1 were obtained by integrating eqn (32) numerically
using the transition-matrix technique presented in detail by Crespo da Silva et al. (1991).
The determination of the eigenfunction F;(s) and of the associated eigenfrequency «, (and,
thus, of the constants 8,, 8, and B,) for the more general case where m = m(s) presents no
major difficulties when the method presented in Crespo da Silva et al. (1991) is applied to
eqn (32) even when that equation has variable coefficients.

Figure 2 shows a plot of the normalized natural frquency for the first mode, @, versus
the normalized orbital angular speed w, for 4 = 1. For small values of w, one obtains
o, ~ 4.73% ~ 22.37, which is the value corresponding t0 @, = 0 when the beam is not
subjected to the gravity-gradient moment. Note that, as disclosed by eqn (32), the limiting
case @, = 0 corresponds to a free—free beam in a constant gravitational field (which is the
classical case treated in structural mechanics books). For comparison purposes, the natural

Table 1. Values of w,, §,, B, and B; for m(s) = constant (u = 1)

First mode Second mode Third mode
o.=1 =5 0-=10 w.=1 w=5 o=10 w, =1 w.=5 w, =10
w; 22.577 27.003 37.598 61.828 65443  75.596 121.04 124.36 134.16
B, 3.0496 3.0463  3.038 6.397 6.383 6.346 11.32 11.30 11.23
B, 612 61.208 61.263 262.7 262.17  260.79 799.3 796.67 789.1

By 20,689 23306 31,865 361,192 378,220 433,965 2,444,457 2,498,448 2,673,243
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Fig. 2. Normalized natural frequencies for bending (), and pitch, for a beam in a circular orbit.

frequency of the f-motion, w, = \/ 3w., is also shown in that figure. For an aluminum beam
(AL2024-T4, E=73x10° N m %, p =277 g cm~?) of length L, with a hollow square
cross-section of length b and thickness A « b, one obtains for a low Earth orbit with period
approximately equal to 86.4 minutes,

o, = QL*/b)/(12p/E)[1 +(1 —2A/b)*] ~ 6 x 10~ "L?/b,

with L and b in meters. This gives, for example, w, = 0.02 for a beam with L = 100 m and
b =29 cm. Thus, it is seen that the nondimensional orbital angular speed w, takes larger
values as the length of the beam is increased. The larger values of w, illustrated in Table 1
corrrzespond, at present, to unrealistically long beams (or, more precisely, very large values
of L*/b).

It is worth noting that eqns (38) and (40) disclose that the coupled v,~8 motion exhibits
internal resonances when wy is near a bending natural frequency w;, or when a, is near 2w;.
However, since w; > w, [i.e. any natural frequency w, (i = 1,2,...) is always greater than
the pitch natural frequency w, = \/gw‘.], as indicated by the results shown in Fig. 2, internal
resonances that require w; < w, are not physically possible.

SUMMARY AND CONCLUSIONS

The mathematically consistent nonlinear differential equations governing the coupled
flexure—pitch motion for a beam in orbit were formulated in this paper. The formulation
used here, which is based on the work presented by Crespo da Silva and Glynn (1978a,b)
and by Crespo da Silva (1988, 1991) dealing with nonlinear dynamics of beams, accounts
for all geometric nonlinearities in the system, and for nonlinearities due to orbital effects.
The full nonlinear equations were expanded to include all the nonlinearities up to cubic
order in a bookkeeping parameter ¢. The beam material was assumed to be linear and,
thus, the nonlinearities due to deformation are caused by changes in the geometry of the
system. These include inertia nonlinearities, and nonlinear terms arising from the expression
for the beam’s curvature. The equations also contain second and third degree—i.e. O(e?)
and O(e*)—nonlinear coupling terms between the pitch and bending motions of the beam.
Some of the nonlinear terms in the equations of motion are multiplied by the “Galerkin
coefficients” B, 8, and B,. It should be noted that if all nonlinear terms in v,(¢), as well as
the §, terms, are neglected in eqn (38), the resulting equation yields eqn (4) in Kumar and
Bainum (1980). Equation (3) in Kumar and Bainum (1980) corresponds to eqn (40) in this
paper if all the nonlinear terms involving v, are disregarded in the latter equation. Many,
but not all, of the nonlinear terms that appear in eqn (27) were also found in the work
reported by Ashley (1967). The missing terms in eqn (49) in Ashley (1967) involve the
elastic deformation u(f) and also terms arising from nonlinearities in the expression for the
curvature of the beam. It is also noted that eqn (48) in Ashley (1967) does not contain all
the nonlinear terms shown in eqn (28) developed in this paper. However, it is interesting
to note that the terms that are missing in eqn (48) in Ashley (1967) do not contribute to
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the reduced equation, eqn (40), after Galerkin’s procedure is applied. The analysis of the
coupled pitch-bending motion of the beam, based on eqns (38) and (40) developed here, is
presented in Part IT of this work (Crespo da Silva and Zaretzky, 1993).
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APPENDIX

The following results, obtained by several integration by parts, as shown below, were used when generating

eqns (38) and (40).
1 s ’ s 1 1 s
j f[p j ,M] ds=[pp j upds] - f P j WFds ds
0 1 H s=0 0 1

1 1 ac
=J; ,uF{—ZKz—mJ; FZ(J; uds) ds}ds=0 (AD)

B, = —'[ F’zf (s—x)udsds
0 1

5 s 1 1 s
= —[(J.l (s—x)u ds)ﬁ F? ds:l ) +J (s—xt)y(.[ F’zds) ds

s

Y

=ﬁ(s—xc)u{ 2K, - o/‘df (fpds) }ds-—Zf (s—x)uK,ds. (A2)



